Simplified sun exposure monitoring device uses a paper sensor

By Simon Pitman

- Last updated on GMT

Simplified sun exposure monitoring device uses a paper sensor

Related tags Ultraviolet

After L’Oreal unveiled a wearable sun patch monitoring device at the beginning of the year, the race has heated up to develop an inexpensive and amenable device for all to use.

And a group of scientists working for the American Chemical Society believes they may have developed a simplified solution aimed at helping individuals stay safe by signalling when the danger of skin burning from UV exposures might occur.

The Researchers, led by J. Justin Gooding, have reported their findings in the ACS Sensors journal which focuses on a paper-based sensor monitoring sun exposure and determining when exposure is being exceeded based on skin tones and sunscreen levels.

Aim was to develop a simplified, safer UV sensor

The main reason behind the group of scientists tackling the research was the fact that most UV sensor devices, including L’Oreal’s sun patch, have been developed around technology that rely on smartphones for their operation.

Likewise, single-use, disposable patches have also come on the market, but some of these products have proved to be questionable because they contain substances that are known to be potentially dangerous to people or the environment.

As a consequence, Gooding and his colleagues set about to develop a disposable sunburn sensor that is inexpensive, composed of safe materials and can be easily calibrated according to different skin tones and the type of SPF sunscreens that are being applied to the skin.

Paper, titainium dioxide and food dye

The result is s sun-exposure sensor created from an inkjet printing titainium dioxide, a nontoxic and inexpensive  compound that is often included in sunscreen formulations, combined with a food dye onto the paper.

Once a sufficient amount of UV radiation hits the sensor, the titanium dioxide causes the dye to change colour, which the scientists claim then causes the dye to change colour and give warning to people to get out of the sun or apply more sunscreen.

The scientists have tailored the sensor by adding UV neutral density filters that can speed up or slow down the discolouration time of the sensor according to skin tone and sunscreen type.

The ongoing research his being partly funded by the Australian Research Council Centres of Excellence.

Related news

Show more

Related products

show more

Collagen Reimagined, Discover Biodesigned Type XXI

Collagen Reimagined, Discover Biodesigned Type XXI

Content provided by Geltor | 20-Mar-2024 | Product Brochure

Collagen is the body’s most abundant protein and a mainstream ingredient for beauty. Type XXI collagen transcends a common protein into a powerful bioactive

Empowering natural barrier function for future-proof skin

Empowering natural barrier function for future-proof skin

Content provided by Lucas Meyer Cosmetics | 14-Mar-2024 | White Paper

Corneopeptyl™ is a new patented peptide biomimetic to the LCE6A protein, obtained by green chemistry-based synthesis. By mimicking the LCE6A protein activity,...

Get your skin ready for summer

Get your skin ready for summer

Content provided by Robertet Health & Beauty | 27-Jun-2023 | Product Brochure

Sunbathing at the beach is the first UV-related skin damage that comes to mind. Whereas, enjoying a coffee on a terrace under the sun can be as harmful.

Related suppliers

Follow us

Products

View more

Podcast

Beauty 4.0 Podcast