Fresh science on anti-aging, from Avon

By Deanna Utroske

- Last updated on GMT

Fresh science on anti-aging, from Avon

Related tags Skin cells Skin

Avon researchers have identified two biological factors that make for a more nuanced understanding of why skin changes with time and how lines and wrinkles form.

Presenting at the Summer Meeting of the American Academy of Dermatology late last week in New York City, company scientists highlighted their findings about the functions of dynein as well as the role of autophagy as they relate to skin aging.

Protein power
One Avon team—Yong Zhuang, Siming Chen, Raaj Khusial, John Lyga, Russell Wyborski—explored the transporter protein dynein and how the level of this protein correlates to skin aging. They “discovered that the level of dynein in skin cells declines with age and that a deficiency of dyneins caused an impairment in the transport of nutrients within skin cells, which can contribute to increased signs of aging on the skin's surface,”​ explained the company in a press release about the findings.

Looking ahead to prospective skin care applications for this research the researchers “postulate that boosting dynein level or activity in skin cells could provide better nourishment to cells and better detoxification of cells, which can lead to healthier cells and thus reduce wrinkles and lines, improve texture, increase overall strength and elasticity of skin,” ​according to an abstract published on the Academy’s site.

“Altogether, our results suggest that dyneins are essential for the well-being of human skin fibroblasts, by transporting essential nutrients and the waste materials to the right place inside these cells,” ​wrote the scientists.

Cellular turnover
The Avon research into skin aging and autophagy went a bit farther, looking at what, besides age, affects the rate of autophagy and what skin care ingredients might be used to help motivate the process.

Starting from the knowledge that “during autophagy, damaged, unnecessary, dysfunctional macromolecules and organelles are broken down and are recycled for building essential cellular components,” ​Avon researchers Raaj P khusial, John Lyga, Uma Santhanam, Michelle Slade looked deeper.

The team found a correlation between diminished autophagy and UV exposure. “Interestingly, we have observed that UV-irradiation and free radical inducers also suppress autophagy activity, suggesting autophagy as a common denominator for intrinsic and extrinsic skin aging.”

And they experimented with the extract of a vine, Tiliacora triandra, and discovered that it “can stimulate autophagy activity, enhance differentiation and stimulate collagen synthesis in skin cells in vitro,” ​reported the team in their published abstract

The Avon press release hints that these latest findings may be applied to reformulations or new products for the company’s anti-aging skin care: “This is the kind of research that has kept Avon's ANEW brand at the forefront of skin aging advances since its launch.”

Related news

Related products

show more

FucoSkin®: Ocean-Inspired Sustainable Beauty

FucoSkin®: Ocean-Inspired Sustainable Beauty

Content provided by Hi-Q Marine Biotech International Ltd | 28-Aug-2024 | White Paper

FucoSkin® is a fucoidan-rich extract derived from the brown seaweed Laminaria Japonica, known for its excellent anti-aging and photoprotective benefits....

See our latest innovations in personal care

See our latest innovations in personal care

Content provided by Covation Bio™ PDO | 02-Apr-2024 | White Paper

At CovationBio PDO, we’re helping the world achieve its sustainability goals by enabling better performing, better-for-the planet products across a range...

Collagen Reimagined, Discover Biodesigned Type XXI

Collagen Reimagined, Discover Biodesigned Type XXI

Content provided by Geltor | 20-Mar-2024 | Product Brochure

Collagen is the body’s most abundant protein and a mainstream ingredient for beauty. Type XXI collagen transcends a common protein into a powerful bioactive

Empowering natural barrier function for future-proof skin

Empowering natural barrier function for future-proof skin

Content provided by Lucas Meyer Cosmetics | 14-Mar-2024 | White Paper

Corneopeptyl™ is a new patented peptide biomimetic to the LCE6A protein, obtained by green chemistry-based synthesis. By mimicking the LCE6A protein activity,...

Related suppliers

Follow us

Products

View more

Webinars

Podcast