Fungi and bacteria the source of sustainable surfactant inspiration

By Andrew McDougall

- Last updated on GMT

Fungi and bacteria the source of sustainable surfactant inspiration

Related tags Bacteria

Researchers in Germany are developing new ways to manufacture surfactants, commonly used in cosmetics, using biotechnological methods, with the assistance of fungi and bacteria.

Cosmetics, shampoos, shower gels and bath additives consist of up to 40 percent surfactants, which reduce the surface tension of water, so that oil can be mixed with water.

Annually about 18 million tonnes of surfactants are manufactured, mainly by chemical means and on a petroleum base, however researchers at the Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB are taking a different approach.

"We produce biosurfactants microbially, based on sustainable resources such as sugar and plant oil," ​said Suzanne Zibek, a technical biologist and engineer at the IGB in Stuttgart.

Tackling the problems

The scientist and her team use cellobiose lipids (CL) and mannosylerythritol lipids (MEL) claiming that testing has shown these to be promising for industrial application.

They are produced in large quantities by certain types of smut fungus, of the kind that can affect corn plants. What is more, CL also has antibacterial properties.

Biological surfactants are biodegradable and less toxic than their synthetic counterparts, but are used in only a few household products and cosmetics, as they are costly and difficult to produce, with low yields, according to the German scientists.

"If we want natural surfactants to conquer the mass market, we need to increase fermentation yields," ​continued Zibek.

Bring down costs

The biologist and her team are optimizing the production process in order to bring down manufacturing costs.

They cultivate the microorganisms in a bioreactor, where they grow in a continuously stirred culture medium containing sugar, oil, vitamins and minerals salts.

Zibek claims the goal is to achieve high concentrations in as short a time as possible, so her team needs to encourage as many microorganisms as possible to grow.

There are numerous factors with a bearing on the outcome, including the oxygen supply, the pH value, the condition of the cells, and the temperature.

“The composition of the culture medium itself is also crucial. It is not just a question of how much sugar and oil go into the mix, but also the speed at which they are added,” ​said IGB.

Related news

Related products

show more

Calendula Cellular Elixir: Alchemy in a cell

Calendula Cellular Elixir: Alchemy in a cell

Content provided by Naolys | 24-Apr-2024 | Product Brochure

Get ready to experience a cellular evolution in skincare with InnerLift Calendula's advanced Plant Cell biotechnology.

See our latest innovations in personal care

See our latest innovations in personal care

Content provided by Covation Bio™ PDO | 02-Apr-2024 | White Paper

At CovationBio PDO, we’re helping the world achieve its sustainability goals by enabling better performing, better-for-the planet products across a range...

Collagen Reimagined, Discover Biodesigned Type XXI

Collagen Reimagined, Discover Biodesigned Type XXI

Content provided by Geltor | 20-Mar-2024 | Product Brochure

Collagen is the body’s most abundant protein and a mainstream ingredient for beauty. Type XXI collagen transcends a common protein into a powerful bioactive

Empowering natural barrier function for future-proof skin

Empowering natural barrier function for future-proof skin

Content provided by Lucas Meyer Cosmetics | 14-Mar-2024 | White Paper

Corneopeptyl™ is a new patented peptide biomimetic to the LCE6A protein, obtained by green chemistry-based synthesis. By mimicking the LCE6A protein activity,...

Related suppliers

Follow us

Products

View more

Webinars

Podcast

Beauty 4.0 Podcast